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FINAL REPORT FOR NONPOINT SOURCE POLLUTION TRIBUTARY SAMPLING
INTRODUCTION

In August of 1993, a project was initiated to monitor water quality conditions
in both freshwater and tidal portions of the tributaries of the Great Bay Estuary. The
purpose of the project was to gather broad scope information on spatial and
temporal aspects of NPS pollution in the watershed, and to determine the effects of
storm events on the levels of surface water contamination. The project was a
cooperative effort between the NH Dept. of Environmental Services, NH Div. of
Public Health Services, NH Fish and Game Dept., Jackson Estuarine Laboratory
(UNH) and the NH Office of State Planning.

METHODS

Thirteen sites in the Great Bay watershed in addition to a site at the Hampton
Harbor Inlet, area were sampled and analyzed following eight rain events by JEL

_ personnel and eight times under a random (meteorological) sampling protocol

(‘NSSP) by DES, OSP and DPHS personnel (Figure 1). The sites consisted of one
freshwater and one tidal site each in the Cocheco, Bellamy, Salmon Falls, Lamprey,
Exeter-Squamscott and Oyster Rivers, with additional tidal sites in the lower
Piscataqua River and the Hampton Harbor Inlet. Each month, a sample from a
freshwater site and a tidal site sample were split for comparative nutrient and
microbial analyses by the JEL and State laboratories. The criterion used for defining a
storm sampling date was > 0.25 “ of rain prior to sampling on the sample date and
during the previous day.

Measurements of temperature, salinity, dissolved oxygen, pH and
observations of weather conditions were recorded at the sampling times. Separate
containers were used for collection of water samples for microbial and suspended
solids/nutrient analyses. Storm sample collection and processing methods were
conducted according to JEL SOP’s 1.05 and 1.06. Nutrient analyses for JEL samples
were done using Lachat Method 11-107-06-1-C for ammonium, method 30-107-04-1-
A for nitrite/nitrate and the wet chemistry method of Parsons et al (1981) for
orthophosphate. Microbial analysis of JEL samples involved standard membrane
filtration methods using mTEC agar for detection of fecal coliforms and Escherichia
coli and mE agar for detection of enterococci.



RESULTS

Nutrients and physical parameters

Since nutrient analyses were performed by different laboratories for the storm
samples and randomly collected samples, sample splits were used to compare results
generated by the DES and JEL analytical laboratories. Results of the split sample
analyses are presented in Tables 1 through 3. Regressions of the results from the
two laboratories as well as scatter plots of JEL data vs. DES data are included in these
tables. The best R2 value was obtained for NO3 (.91) (Table 2) , followed by NH4
(.78) (Table 1) and PO4 (.58) (Table 3). The primary differences in results for the
nitrogen species were associated with the lower concentrations, probably due to the
high detection limits (6.3 uM NH, 1.4 uM NQO3) in the LACHAT methods used by
DES. There was poor agreement in results for the PO4 methods, at both the high
and low end. Though split samples were not run for suspended solids, the DES
data, particularly the estuarine sites, were consistently higher than the JEL data.
Nevertheless, the data were analyzed as (1) a combined data set; (2) random
sampling compared to storm sampling; (3) random samples that were collected
within 24 hours of substantial rainfall (11/2/93,5/17/94 and 6/14) were combined

with storm sampling and compared as “wet” samples to the remaining random or
' “Hry, sarnples Storm 'samples which were found to violate the criteria for “wet”
condifions (5/3/94 and 6/22/94) were included in the “dry” data.

Combined nutrient and suspended solids data from the random sampling
and storm sampling are presented in Table 4. Figures 1A-4 illustrate the site means
for all samples for the ten month period. For ammonium, the highest
concentrations were observed in the freshwater and estuarine site in the Cocheco
and Salmon Falls rivers, the estuarine site in the Squamscott River, and the
freshwater site in the Oyster River (Fig. 1A). The highest nitrate concentrations
were measured in the freshwater sites in the Cocheco and Salmon Falls rivers, with
the estuarine sites in the same two rivers also showing high concentrations. The
tidal site in the Squamscott River and the freshwater site in the Oyster River also
had elevated NO3 by comparison to other sites (Fig. 2). With the exception of the
Salmon Falls and Cocheco rivers, PO4 levels were generally low at the freshwater
sites, and elevated in the estuarine sites in the Cocheco, Lamprey, Squamscott and
Opyster rivers (Fig. 3). Total suspended solids were consistently lower in the
freshwater sites of each river. Highest concentrations were measured in the
Squamscott tidal site, followed by the Lamprey River, Oyster River and Hampton
Harbor (Fig 4).

Storm sampling data (Table 5) were analyzed independently from the random
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samples, and station means are presented in Figures 5 through 11. The highest
ammonium concentrations were measured in the freshwater site in the Salmon
Falls River. Both Cocheco River sites, the tidal sites in the Salmon Falls,
Squamscott and Oyster rivers, and the freshwater site in the Oyster River also
showed elevated ammonium concentrations (Fig. 5). The freshwater sites in the
Salmon Falls and Cocheco also had the highest concentrations of nitrate, followed
by their tidal counterparts and the tidal Squamscott and freshwater Oyster river sites
(Fig. 6). As was the case with the combined data analysis, PO4 concentrations were
generally lower in the freshwater sites with the exception of the Salmon Falls and
Cocheco rivers. The highest PO4 concentrations were found in the tidal portions of
the Squamscott, Oyster and Lamprey rivers (Fig. 7). Suspended solids following
storms were all quite low in the freshwater sites, and with the exception of the
Squamscott and Lamprey river tidal sites, quite low at the tidal sites as well (Fig. 8).
Percent organic content was high (45-67%) at the freshwater sites with low
suspended solids concentrations, and from 17-32 % at the tidal sites with higher
solids concentrations (Fig. 9). Mean salinities following rain storms for the tidal
sites are shown in Fig. 10. The highest salinities were measured in the lower
Piscataqua, Bellamy and Oyster River mouths, and the inlet to Hampton Harbor.
Similar salinities were measured in the Salmon Falls, Cocheco, Squamscott and
Lamprey Rivers (Fig. 10). Mean pH for the freshwater sites (7.1-7.3), and tidal sites
- (7,6-7:9) were similar (Fig 11).
=T ‘Nutrient and su'spended solid data from the random sampling are presented
in Table 6, and comparisons of the sample site means for storm samples and
random samples are shown in Figures 12 through 15. For most sites, the same
pattern of ammonium concentrations (in terms of which stations had the greatest
mean concentration of ammonium) was observed for random and storm samples,
with storm samples generally higher. The exceptions to this pattern were for sites
with storm sample means lower than the DES detection limit (Fig. 12). The station
means for nitrate concentrations were very similar for the sites with higher
concentrations, and higher in the random samples at sites with lower
concentrations (Fig 13). Storm sample concentrations of PO4 were higher than the
random samples for all the freshwater sites and the tidal sites in the Cocheco,
Salmon Falls, Oyster and Piscataqua Rivers. Mean storm PO4 concentrations were
lower than the random sample means in the Bellamy, Lamprey, and Squamscott
rivers and Hampton Harbor tidal sites (Fig. 14). Mean TSS concentrations in both
storm and random samples were similarly low for all the freshwater sites, and with
the exception of the tidal Squamscott River site, much higher in the random
samples than the storm samples (Fig. 15).

In examining actual rainfall amounts for the sampling dates (Table 6A), three
of the random sample dates fit the rainfall criteria for storm sampling (11/2/93,
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5/17/93 and 6/14/93), while two of “storm sample” dates did not meet the criteria
(5/3/94 and 6/22/94). In order to obtain a more accurate picture of potential
differences in contaminant conditions between sampling dates that followed rain
events and those conducted during a dry period, the “wet” samples from the
random data set were added to the storm sample data set, and the “dry” storm
samples were added to the random data set, thus creating a more accurate
assessment of wet and dry conditions. Sample site means were calculated for the
nutrients and suspended solids for the two conditions. Comparisons are presented
in Figures 16 through 19. Rearranging the ammonium data in this way did not
change the relationship that was observed for the storm-random data (Figs 12 and
16). The changes observed for mean NO3 concentration , however, were that NO3
was higher in the “dry” samples at the freshwater sites in the Cocheco and Salmon
Falls rivers, and higher in the “wet” samples at the tidal Squamscott River site.
Otherwise, the site comparisons did not change with the data transformation (Figs.
13 and 17). Site means for PO4 concentration and TSS concentration in the “dry”-
"wet” comparisons were no different than the storm-random comparisons (Figs. 14
and 18, Figs. 15 and 19).

Individual sampling dates for all the nutrient and suspended solids data
combined were plotted to see if there were any obvious temporal trends. This type
~ of analysis would not be definitive because of the sampling gap between December
‘a{f&‘Aprll For each plot (Figures 20-31) a single parameter (ie. NH4) at freshwater
and corresponding tidal sites for two tributaries were plotted vs time. The two tidal
only sites (GB 13 and HH 1A) were plotted together. For ammonium at the Cocheco
and Salmon Falls river sites, the highest concentrations were measured in the fall,
though the concentrations in the freshwater portion of the Salmon Falls River
appear to be independent of season (Fig. 20). No temporal trend was observed for
ammonium concentration in the Bellamy and Lamprey Rivers, though the
November-December concentrations seemed lower that expected (Fig 21). In the
Exeter-Squamscott and Oyster Rivers, a single very high ammonium concentration
was observed in the freshwater portion of the Oyster River in December. Otherwise,
the only observable temporal trend was that concentrations were lowest in April-
May (Fig. 22), probably coincident with the spring phytoplankton bloom. No
ammonium concentration trend was obvious from the Piscataqua River and
Hampton Harbor data, other than that the two sites appeared to have similar
variation, and lowest concentrations were observed in the late fall and early spring
(Fig. 23). Nitrate levels throughout the year were consistently higher in the
freshwater sites in the Cocheco and Salmon Falls Rivers, and concentrations at all
sites, both tidal and fresh, were lowest in early spring, and highest in freshwater sites
in the early fall (Fig. 24). Nitrate concentration in the Bellamy and Lamprey Rivers



was highest in the late fall and winter, and highest at that time in the freshwater
portions of those rivers. Lowest concentrations were observed at all sites in the
spring (Fig. 25). A similar temporal trend was observed in the Exeter-Squamscott
and Oyster rivers, though the highest nitrate concentrations were measured in the
tidal Squamscott River and freshwater Oyster River sites in the fall (Fig. 26). At the
Hampton and Piscataqua River sites, the highest nitrate concentrations were
measured in fall and winter, and the lowest in spring (Fig. 27). A single high
phosphate concentration measured in the tidal Cocheco River sample in early
September was the exception to the high late fall-low spring trend in the Cocheco
and Salmon Falls Rivers. The freshwater Cocheco River site was higher for most
sample dates than the others (Fig. 28). PO4 concentrations in the freshwater sites in
the Bellamy and the Lamprey rivers were lowest in the summer and early fall,
increased in the winter months, and decreased again in the early spring. This trend
was not as clear cut for the tidal sites in the Bellamy and the Lamprey rivers, and
concentrations were also quite a bit higher in the fall and winter (Fig. 29). The
Exeter-Squamscott River and Oyster River PO4 concentrations were very similar,
both for temporal trends and freshwater-tidal differences, to the Bellamy and
Lamprey Rivers (Figs. 29 and 30). In the Hampton and Piscataqua River samples,
the only noticeable temporal trend was that the early spring samples had the lowest
PO4 concentrations.
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Bacterial Indicators

The same approach for data analysis given the nutrient data was applied to
the bacteriological data. The data for fecal coliforms, E. coli and enterococci
concentrations from split samples are presented in Table 7. Geometric means for
analyses from the two labs showed relatively good agreement. Generally, higher
tecal coliform and E. coli levels were detected in the freshwater sites and lower
levels in tidal sites at both labs. For enterococci, the State numbers were higher for
freshwater compared to tidal sites, while little difference was observed for JEL
analyses. Thus, the overall mean for State enterococci levels is higher than that for
JEL data.

Because E. coli is one of numerous bacterial species that constitute fecal
coliforms, their levels should be lower than fecal coliform levels. This was the case
for JEL analyses, but the fecal coliform levels for the State analysis were consistently
lower than E. coli levels. This was a function of DES using mFC medium for
detecting fecal coliforms and mTEC medium for E. coli, while JEL used mTEC for
both. The mTEC method could be expected to give higher detectable colonies
because it involves a 2-step temperature incubation designed to better detect injured



bacteria, and it also uses a smaller pore size (0.45 pM) filter compared to the mFC
method (0.7 um). Thus, the mTEC method could be expected to detect more injured
and smaller cells compared to the mFC method. In many instances in the
following presentation of bacterial results, the State fecal coliform concentrations are
presented as ‘modified’ data. For this modification, fecal coliform levels that were
less than reported E. coli levels were considered to be equal to E. coli levels.

The split sample results are analyzed separately for each indicator in Tables 8-
10. Comparison of JEL fecal coliform data to raw State data gave an r2 value of 0.45,
indicative of a poor direct relationship between results of analyses from the same
sample (Table 8). After modifying the State data as previously described, an

excellent relationship was indicated between labs, with an r2 value of 0.97 for all
data. Inspection of specific pairs of numbers shows a consistent trend for each pair,
with high or low JEL numbers corresponding to the same for State data. A strong
direct relationship for analyses from the two labs is expected, and modification of
the State data for better intepretation of results appears to be justifiable from this
regression analysis. A similar strong direct relationship between State and JEL E.
coli analyses is presented in Table 9. The results for the two indicators are expected
to be similar because of the similarity in methods. The enterococci splits did not
agree as well. Generally, high or low JEL data were also high or low for
corresponding State data, although the State numbers were often higher than
: ggr&gp’qnding JEL numbers (Table 10). However, there were a few instances where
pairéddata weré different by a large degree. Of particular concern are two pairs
where one lab reported its highest level and the other lab reported a much smaller
level. As shown in the graph, these opposing, highly variable results can ruin the
overall relationship between the two sets of data, as reflected in the r2 value (0.36).
These differences could be a function of variability within a split sample if the
splitting or initial sampling procedure is faulty. More likely, differences in
analytical methods or sample handling procedures between labs could cause
observed differences.

Data for the JEL storm sampling are presented in Table 11, and data for the
State random sampling are presented in Table 12. Geometric averages of the three
indicators for data combined are summarized in Table 13, and the geometric means
for the combined data from the different sites are illustrated in Figures 32-34.
Results with raw and modified State data are presented in Figures 32 and 324,
respectively, with the only difference being higher overall levels in Figure 32A
compared to Figure 32. The data show high overall levels at the freshwater sites in
the Oyster River, Exeter River, and especially the Cocheco River. These areas are the
most urbanized of the freshwater sites. Other freshwater and tidal sites had
relatively low levels, except for the tidal site in the Lamprey River, which is much
more influenced by urban Newmarket compared to the freshwater site. High fecal
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coliform levels at this site have been observed consistently for a number of years,
and independent efforts are being made to identify sources. As expected, the same
trend was observed for E. coli results (Figure 33). Overall enterococci levels were
not as high as for fecal coliforms and E. coli, so differences between sites were not as
pronounced. The four sites with the highest levels were the same four as with fecal
coliforms, but the highest levels were observed at the Oyster River freshwater site,
with the freshwater Cocheco River site next highest.

On two dates, the State also sampled upstream from the freshwater sites in
the Cocheco, Oyster and Exeter rivers to potentially bracket sources of
contamination. Inspection of specific data for all three indicators at the different
sites shows upstream sites in the Cocheco and Exeter rivers were more
contaminated than the routine sites on 5/17, but not on 6/14. Levels of E. coli were
slightly higher at the Oyster River upstream site on 6/14. In the Cocheco River, the
furthest upstream site (22-CCH) had somewhat lower levels of indicators compared
to the middle site (11-CCH), and more comparable to the routine site.

A major focus of this study was to see if contaminant levels are relatively
higher following rainfall events at the different sites. The JEL sampling was
designed to follow rainfall events, and the geometric means for these samples are
summarized in Table 13 and illustrated in Figures 35-37. Storm sample means for
fecal (_:gliforms and E. coli are all higher than the means for the combined data,

" &¥cept for the tidal sites at the mouths of the Bellamy and Oyster rivers (Table 13).
This stuggests that rainfall increases contamination of the sites. The highest fecal
coliform and E. coli levels were observed in the freshwater sites of the Oyster,
Exeter, and Cocheco rivers, and the tidal site in the Lamprey River (Figures 35-36).
In addition, levels in the tidal site of the Cocheco River were also relatively high,
with E. coli levels higher than in the freshwater site. The same relationships
between levels at freshwater compared to corresponding tidal sites as observed for
the combined data are observed for the storm data, except for the tidal site storm
data being higher than the freshwater sites in the Salmon Falls and Cocheco rivers
for E. coli and for the fecal coliform data at the Salmon Falls River sites. Other sites
with relatively high levels are the tidal site in the Salmon Falls River and the
freshwater site in the Bellamy River. Enterococci levels from JEL data were not as
high compared to the combined data as with the other two indicators (Table 13),
reflecting the relatively higher levels reported by the State. Again, the highest sites
were the same as with the combined data, with the two highest sites being the
freshwater Oyster River site and the tidal Lamprey River site (Figure 36). The same
relationships between levels at freshwater compared to corresponding tidal sites as
observed for the combined data are observed for the storm data.

The geometric means from the random samples analyzed by the State are also



presented in Table 13. These samples represent for the most part dry samples, and
the geometric means are compared to JEL storm sample results in Figures 38-40.

The two sets of data do not give similar spatial trends for different fecal coliform and
E. coli levels, except that the freshwater site in the Cocheco River again had the
highest levels (Figures 38-39). The sites with the next two highest levels were the
tidal sites at the mouths of the Oyster and Bellamy rivers, sites that had the lowest
levels for storm samples. For enterococci, the levels were again all relatively low, so
differences among sites were minimal (Figure 40). The sites with the three highest
means are the freshwater sites in the Cocheco and Oyster rivers, similar to storm
samples, and the tidal site in the Oyster River. For all three indicators, levels at the
tidal sites on the Salmon Falls, Cocheco and Lamprey rivers were all relatively low,
whereas these sites had high levels of indicators following storm events. This
suggest that these sites may be most affected by runoff-associated contamination.

A more accurate way of determining the effects of rainfall events is to
compare results for samples collected according to the criteria upon which storm
sampling was based. For this, rainfall data from the Durham station were used to
determine if rainfall on the day of sampling and the previous day combined was
>0.25 inches, in which case the sample date could be considered a storm, or ‘wet’
sampling date, and all other dates (<0.25 inches) are considered 'dry' dates. Storm
and random data were reorganized to meet these criteria, and the geometric means
for th@(hfferentsues are summarized in Table 13. Comparisons of dry vs. wet
concentrations for the three indicators are illustrated in Figures 41-43. For all three
indicators at all sites, levels for all geometric means for wet samples were greater
than the means for dry samples, although to varying extents. This analysis did not
show higher dry-date levels for the two tidal sites in the Oyster and Bellamy rivers,
as did the storm vs. random data analysis. The sites with the four highest means for
wet samples are the freshwater sites in the Cocheco, Exeter, and Oyster rivers and
the tidal site in the Lamprey River for all three indicators (Figures 41-43). The
difference between wet and dry levels at these four sites was most striking for all
three indicators, illustrating the apparent large influence of runoff on contaminant
levels. Again, these sites are all directly influenced by densely populated urban
areas, while the other tributaries, including the Bellamy, Salmon Falls, and
(freshwater) Lamprey rivers are impacted by less densely-populated upstream areas.

Concentrations of the three bacterial indicators on individual dates were
plotted chronologically to see if there were any apparent seasonal or other temporal
trends. The data set is not extensive, with no sampling in July or January through
March. For each graph (Figures 44-55), data for a single indicator at freshwater and
tidal sites for two tributaries are plotted together. As expected, the highest levels
were apparent during wet sampling dates for fecal coliforms (Figures 44-47). The



highest levels (>1000 FC/100 ml) were observed on wet dates during autumn (9/7,
9/27,11/18) and late spring (6/13) for the freshwater sites in the Cocheco, Exeter and
Opyster rivers (Figures 44 and 46) and the tidal sites in the Salmon Falls (Figure 44),
Bellamy (Figure 45) and Piscataqua (Figure 47) rivers. These four dates had four of
the five rainiest periods prior to sampling of the nine wet dates, suggesting that
amount of rainfall may have some direct relationship to level of contamination.
Using modified data, fecal coliforms >1000/100 ml were also observed at the
freshwater Cocheco River site on 8/24/93, a dry date. E. coli levels followed similar
trends as observed for fecal coliforms (Figures 48-51). Generally, levels were highest
on wet dates, with highest levels observed on three of the autumn dates and 6/13/94
at the same sites as for fecal coliforms. The trends for enterococci were not as
distinctly related to wet/dry conditions (Figures 52-55). The highest levels (>250/100
ml) were observed at a number of sites on 9/27, 11/18 and 12/6, the top three rainiest
dates, and 11/2, another wet sample date. The levels were consistently low for all
sites on 12/20, 4/19 and 5/3, all dry dates sampled by the State (Figures 52-55).

DISCUSSION AND INTERPRETATION

- Nutrients

The data gathered for this project provide a broad scope assessment of the
spatial distribution of potential sources of nutrients in the Great Bay watershed.
Both the random and storm sampling data indicate that certain tributaries are
contributing greater amounts of dissolved inorganic nitrogen and phosphorus than
others. The problem areas for ammonium are the fresh and tidal portions of the
Cocheco and Salmon Falls rivers (particularly the freshwater Salmon Falls site), the
tidal portion of the Squamscott River, and both fresh and tidal portions of the Oyster
River. The freshwater portions of the Cocheco and Salmon Falls rivers by far had
the highest nitrate concentrations, with the tidal portions of these rivers and the
freshwater Oyster and tidal Squamscott rivers also showing elevated levels. Elevated
phosphate levels were observed in the freshwater and tidal Cocheco samples, and
the tidal Lamprey, Oyster and Squamscott samples. Suspended solids were the
highest in the tidal Squamscott River samples, and very low in the freshwater
samples. The other tidal sites were all higher than their freshwater counterparts,
indicating either that there are sources of suspended sediments to the tidal areas or
that resuspension is occurring.

Comparison of storm sampling data with random data and the “wet” vs “dry”
data, indicates that some sites had elevated ammonium concentrations following
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storm events. The sites with lower concentrations, however, did not appear to
increase following rain events. Very little difference in mean nitrate concentration
was observed between storm and non-storm samples and differences in PO4 levels
were inconsistent. The observed inconsistencies in the storm/non-storm nutrient
comparisons may be the result of the different analytical methods used by the two
laboratories, particularly in the case of ammonium. This problem with detection
limits may be solved in the next phase of the project as one laboratory will be
conducting all the nutrient analyses. Salinity and pH measurements taken during
the storm sampling indicate that the greatest freshwater influence in the estuarine
system is from the Cocheco, Salmon Falls, Lamprey and Squamscott rivers, which
are the same rivers in which high nutrient concentrations were measured. This
suggests that nutrients may be entering the estuary from freshwater sources,
although not necessarily in association with rainfall events.

Bacterial Indicators

The results of this study allow for an assessment of relative bacterial
contamination entering the waters of the Great Bay Estuary from its major
tributaries based on synoptic sampling during wet and dry periods. The
tributary sites with the highest levels of contaminants were in the freshwater
" ~Portions of the Cocheco, Oyster and Exeter rivers and the tidal portion of the
Lamprey River. All of these sites are surrounded by and are dominated

upstream by densely populated urban areas, in contrast to the less-densely
populated areas surrounding the other tributaries (Bellamy, Salmon Falls,
upstream Lamprey rivers). This suggests that either runoff, direct sources, or
high densities of either on-site private sewage disposal sites or leaky
municipal system pipes are contaminating these tributaries and eventually
the estuary. The tidal site in the Lamprey River has been under investigation
to locate contamination sources. Results from another study consistently
show that the contaminants have a major impact on the water quality of
Great Bay at the mouth of the river.

The effect of rainfall and associated runoff appears to intensify the
nonpoint source contamination problem. In fact, except for the tidal portion
of the Cocheco River, levels of bacterial indicators were relatively low at tidal
sites for the other tributaries during dry periods compared to wet periods.
The strong response to rainfall events, especially at the more urban areas,
suggests that the downstream quality of estuarine water is most susceptible to
degradation by these events. This was especially true during autumn when
the heaviest rainfall events were sampled. Rainstorms recorded at the
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Durham station are typically heaviest and most frequent during the autumn
season (data not shown). A better understanding of sources and the influence
of rainfall/runoff events is needed, and should become more clearly defined
with a continuation of this study.

One of the most critical issues that is affected by nonpoint source microbial
contamination is the harvesting of shellfish. There are abundant oyster
resources throughout the Great Bay Estuary, although only some areas in
Great and Little bays are currently classified as approved in New Hampshire.
However, the Maine side of the Piscataqua River is classified as restricted, and
it is an active site for commercial shellfishing; the harvested oysters are
purified before marketing, as required by law from restricted areas. The
continued contamination of these areas by nonpoint source pollution is an
issue that needs attention, as increased economic pressures bring greater
attention to New Hampshire's untapped shellfish resources. Based on the
results of this study, it appears that storm events and urban areas have a large
influence on contamination in the tributaries, with only the tidal site in the
Squamscott River and the mouth of Hampton Harbor meeting NSSP criteria
(geometric mean = <14 FC/100 ml) for dry periods, with no sites meeting
these criteria for wet periods (Table 13; modified data).

The splitting of a tidal and freshwater sample each month for analysis by
' \*-bot:}i Jnvolved labs proved to be a useful and necessary exercise to undertake
 for-this’ smdy. It is especially important for deciding how to interpret the

results. For fecal coliforms, it appeared that the different analytical methods
used by the State compared to E. coli analysis caused reported levels to be
lower than expected. The exercise of modifying the data to increase some
fecal coliform data to becoming equal to E. coli data was based on the fact that
E. coli can only constitute a portion or potentially equal concentration
relative to fecal coliforms. Because both labs used mTEC medium forE. coli
analysis, use of mTEC E. coli data for fecal coliform data allowed for a
consistency within data sets including data from both labs, giving a more
accurate interpretation of results. The lack of consistent agreement between
enterococci data from the two labs is not well understood at this time.

Overall Study

A number of points pertain to the overall study independent of either
category of contaminants studied. First, the splitting of analysis between two
labs presented problems in interpreting data for all parameters. This is
probably the result of different analytical methods being conducted by the two
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labs, although efforts may still be needed to standardize common methods.
This would include sample processing and holding procedures, as it is
obvious that more time before analysis is necessary for the State labs because
of the distance between sampling sites and the State labs. The method of
splitting samples should also ensure that no inter-sample variability is
introduced at that time.

Another issue is storm sampling. By taking a single sample on the day
following a storm event, it is always possible that sampling could miss the
major contamination pulse. However, the consistent trend of higher
bacterial levels after wet compared to dry periods suggest that at least part of a
contaminant pulse was caught by the sampling that occurred. Other factors
that can affect the contamination response following a rainfall event include
seasonal influences (temperature, presence of snow, evapotranspiration, etc.),
intensity and duration of storms, and conditions prior to events (dry vs. wet).
It appeared that for bacterial contaminants, the heavier rainfall events caused
relatively greater amounts of contamination to occur at some sites. In
addition, the present approach to rainstorm sampling could be improved if
more immediate knowledge of the amount of rainfall that has occurred could
be made available. At present, JEL personnel prepare for sampling upon
hearing of predicted events, then confirm that the sampled event met the
preset criteria only at the beginning of the next month when data for the
Durham station are published. This worked quite well, despite several false
starts, although two of eight ‘events' did not meet the criteria. Despite these
concerns, it appears that some useful trends were apparent from this first year
of study on the tributaries to Great Bay Estuary.
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Table 1. Regression of NH4 concentration for split samples.

DES pm NH4  JEL pm NH4
6.30 1.84 Regression Statistics
6.30 1.14
6.30 4.82 Multiple R 0.881701893
16.80 18.72 R Square 0.777398228
6.30 10.82 Adjusted R Square  0.758848081
14.00 15.90 Standard Error 1.970582441
7.00 11.97 Observations 14
6.30 5.94
6.30 3.53
14.00 16.23
6.30 0.38
14.70 21.30
6.30 6.25
7.00 .5.60
DES vs. JEL pm NH4
25 1
=
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Table 2. Regression of NO3 concentration for split samples.

DES um NO3 JEL um NO3
84 5.13 Regression Statistics
1.26 3.63
13.3 6.27 Multiple R 0.954599147
252 35.12 R Square 0911259531
4.2 8.02 Adjusted R Square 0.903864492
4.2 5.99 Standard Error 6.108090128
9.8 4.42 Observations 14
60.9 65.51
39.9 39.27
54.6 43.61
11.9 6.38
9.1 5.82
11.2 13
39.2 50.3
T DES vs. JEL um NO3
80 1
n
60 -
g ]
|
L,g 40 1 -
20 1
_ =
H
—
0 20 40 60 80
DES




Table 3. Regression of PO4 concentration for split samples.

DESumPO4  JEL um PO4

1.271 1.6 Regression Statistics
1.736 2.22
2.046 2.14 Multiple R 0.75891422
1.054 1.41 R Square 0.575950794
2.139 1.29 Adjusted R Square 0.54061336
0.217 0.43 Standard Error 0.468213726
0.93 0.94 Observations 14
0.558 0.78
0.031 0.45
1.395 2.24
1.891 1.06
0.372 0.52
0.558 0.92
1.209 143
DES vs. JEL um P04
2.5 ¢
n ]
ol n
[
- 1 .5 I n ]
o
1 [ n | ] n
n
0.5 a "
0
0.5 1 1.5 2 2.5
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Table 6A. Rainfall conditions relative to sampling dates and classification based on
the following criteria:
Wet=>0.25" prior to sampling on sample date and previous day; Dry=<0.25".

Inches of rain
Sampling on sample date  Condition
DATE Agency & previous day  classification

24-Aug-93|DES 0/0 Dry
7-Sep|DES 0/0 Dry
9-Sep|JEL 0.5/0.66 Wet
27-Sep{JEL 1.19/2.16 Wet
5-Oct|DES 0.05/0.05 Dry
2-Nov|DES trace/0.6 Wet
18-Nov|[JEL 0.83/1.15 Wet
6-Dec|JEL 0/1.55 Wet
20-Dec|DES trace/0.05 Dry
19-Apr-94|DES 0.05/0.05 Dry
3-May|JEL 0/0.06 Dry

17-May|DES 0.25/0.6 Wet
26-May|JEL trace/0.42 Wet
13-Jun|JEL 0.45/0.8 Wet
14-Jun|DES 0.03/0.48 Wet
~  22-Jun|JEL 0/0.19 Dry
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Table 7. Split sample analysis of bacterial indicators by State and JEL labs.

Fecal coliforms
JEL STATE JEL STATE
DATE Freshwater Sites Tidal Sites
24-Aug 1260 220 9.5 7
7-Sep 293 133 9 5
5-Oct TNTC 166 25 6
2-Nov ND 48 76 67
20-Dec 84 22 83 46
19-Apr 48 29 36 20
17-May 150 112 82 55 Overall data
14-Jun 5 200 5 23 JEL State
Geometric mean 101.9 86.5 258 18.9 46.5 36.3
Standard deviatior 64 2.7 3.1 2.8 49 35
E. coli
JEL STATE JEL -STATE
DATE Freshwater Sites Tidal Sites -
24-Aug 1250 1390 9.5 6
7-Sep 193 240 9 6
5-Oct TNTC 330 12.5 13
- ez s 2*NOV ND- 80 38 90
T 20%Pec|. 76 25 76 51
" 19-Apr 26 21 27 34
17-May 138 90 78 61 Overall data
14-Jun 4 189 0.8 16 JEL State
Geometric mean 80.1 120.0 16.4 227 32.3 464
Standard deviatiol 7.0 4.8 4.4 2.8 6.2 4.5
Enterococci :
JEL STATE JEL STATE
DATE Freshwater Sites Tidal Sites
24-Aug 48 70 1.5 9
7-Sep 25 50 3 9
5-Oct 72 80 6 10
2-Nov ND 60 111 60
20-Dec 12 20 51 40
19-Apr 0 9 6 6
17-May 20 20 7 7 Overall data
14-Jun 29 130 10 10 JEL State
Geometric mean 14.8 31.7 10.8 17.9 124 229
Standard deviatio 5.9 24 44 3.2 47 28



Table 8. Regression analysis of fecal coliform concentrations for paired split samples.

Fecal coliform  MPN per 100 ml
JEL DES: raw DES: modified Regression Statistics: raw data
1260 220 1390 R Square 0.45
293 133 240 Standard Error 55.14
84 22 25 Observations 14
48 29 29
150 112 112 Regression Statistics: modified data
5 200 200 R Square 0.97
9.5 7 7 Standard Error 61.20
9 5 6 Observations 14
25 6 13
76 67 90
83 46 51
36 20 34
82 55 61
5 23 23

JEL fecal coliform levels compared to
paired DES (modified) levels.

1500
1 1000
=l

™ 500

ousl ™
0 500 1000 1500
DES




Table 9. Regression analysis of E. coli concentrations for paired split samples.

E. coli MPN per 100 ml
JEL DES Regression Statistics:

1250 1390 R Square 0.97
193 240 Standard Error 61.86
76 25 Observations 14
26 21
138 90
4 189
9.5 6

9 6

12.5 13
38 90
76 51
27 34
78 61
0.8 16

JEL E. coli levels compared to paired DES
levels.

1400 T [ ]

1200 +

1000 1
= 800 1
E, 600 -

400

200m -

oW — .
0 200 400 600 800 1000 1200 1400
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Table 10. Regression analysis of enterococci concentrations for paired split samples.

Enterococci MPN per 100 ml
JEL DES
48 70
25 50
72 80
12 20
0.5 9
20 20
29 130
1.5 9
3 9
10
111 60
51 40
6 6
7 1
10 10

Regression Statistics:

R Square 0.36
Standard Error 30.27
Observations 15

JEL enterococci levels compared to paired

DES levels.

140
120
100 1
80 |
60
40 1 u
20 1 i R

JEL
n

0 20 40 60
DES

80 100 120
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Table 11. Bacterial indicator concentrations at all study sites sampled by JEL following rain storms.

FECAL COLIFORMS

DATE 5-SFR 7-CCH 5-BLM 5-OYS 5-LMP 9-EXT GB22 GB21 GB2 GB50 GB15 GBS0 GB13 HHIA
9Sep| 10 3110 103 660 40 1240 258 1180 105 4.5 160 175 35 464
27-Sep| 14 2800 36 1160 30 820 100 140 195 25 3040 280 190 40
18-Nov| 132 3600 180 1520 50 460 405 645 210 545 200 160 165 84
6Dec] 120 360 90 420 328 260 110 540 75 58 360 15
3Mayl 73 59 53 100 19 77 27 8 14 225 27 8 56 49
26May| 143 102 8 210 16 115 111 295 47 55 165 60 625 61.25
13-Jun| 40 325 130 3200 70 210 5700 5500 35 525 355 225 5 40
22.Jun| 2175 725 220 75 15 325 55 100 625 1125 100 70 55 275
Geom. ave. 61 447 97 472 40 228 130 410 29 1S 220 67 25 47
E.COLI
DATE 5.SFR 7-CCH 5-BLM 5-0YS 5-LMP 9-EXT GB22 GB21 GB2 GB50 GB15 GB80 GB13 HHIA
9.sep] 4 1300 53 310 25 480 186 820 9 45 110 12 23 420
27-Sepl 7 2200 18 880 20 640 100 120 195 25 2990 270 134 40
18-Nov| 53 3200 172 1300 44 440 320 625 198 41 200 150 130 84
6Dec| 108 240 90 420 323 240 90 350 60 53 340 10
3 May| 47 470 43 59 18 67 15 70 325 125 27 64 56 47
“26-Mayl 98 9 83 130 15 1125 43 200 165 54 142 20 625 55
13-Jun| 35 305 115 3000 60 195 500 4200 3375 525 425 175 3 40
22Jun| 1275 375 220 75 14 215 45 100 625 875 100 625 5 125
Geom. ave. 37 239 78 356 34 184 97 326 20 13 209 49 20 4l
ENTEROCOCCI
DATE 5-SFR 7-CCH 5-BLM 5-0YS 5-LMP 9-EXT GB22 GB21 GB2 GB50 GBI5 GBS0 GB13 HHIA
9-Sep| 8.5 85 10 28 8 100 685 525 74 72 60 92 15 T3
27-Sep| 8 268 10 262 175 80 24 14 98 08 4180 30 118 60
18-Nov| 135 120 700 1930 8 233 190 265 240 70 200 400 70 98
6Dec|] 52 210 240 1020 403 505 265 345 260 196 350 75
3-May 3 5 12 50 9 4 14 6 0.5 10 10 14 8 14
26-May| 305 37 435 102 3 16 16 124 17 59 1125 135 10 55
13-Jun| 46 90 22 75 155 75 60 2575 19 10 60 S5 3 32
22-Jun| 3 39 4 50 115 2 3 08 9 310 08 1 3
Geom. ave. 13 66 36 151 35 42 37 42 30 19 102 26 15 32
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Table 14. Concentrations and geometric mean levels (per 100 ml) of bacterial indicators
at routine freshwater sampling sites and sites upstream of routine sites.

FECAL COLIFORMS
DATE 7-CCH 11-CCH 22-CCH 5-QYS 8-0YS 9-EXT 14-EXT
24-Aug| 220 6 6
7-Sep| 133 5 51
5-Oct| 166 13 8
2-Nov| 48 122 105
20-Dec| 22 9 16
19-Apr| 12 8 26
17-May| 112 125 75 133 145 220 220
14-Jun] 200 112 92 158 200 57 18

Geometric average

78 118 83 24 170 33 63

E.COLI
DATE 7-CCH 11-CCH 22-CCH 5-0OYS 8-0YS 9-EXT 14-EXT
24-Aug| 1390 21 12
7-Sep| 240 20 98
5-Oct| 330 41 10
2-Nov| 80 140 190
20-Dec| 25- 23 19
L ,'E?-/Apr 21 - . 10 16
T 17-May| 907 140 160 360 160 240 800
7 14-Jun| 189 169 95 133 192 62 21
Geom. ave. 129 154 123 48 175 42 130
ENTEROCOCCI
DATE 7-CCH 11-CCH 22-CCH 5-OYS 8-OYS 9-EXT 14-EXT
24-Aug| 70 9 9
7-Sep| 50 10 20
5-Oct} 80 20 9
2-Nov| 60 390 250
20-Dec] 20 10 9
19-Apr| 9 9 10
17-May| 20 300 30 170 30 80 170
14-Jun| 130 30 20 110 70 60 10
Geom. ave. 41 95 24 32 46 25 41
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Figure 1. Sampling sites for the tributary NPS study: 1993-94.



MEAN NH4 (uM)

FIGURE 1A. MEAN NH4 CONCENTRATION FOR ALL SAMPLES
COMBINED ~
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FIGURE 2. MEAN NO3 CONCENTRATION FOR ALL SAMPLES COMBINEL
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FIGURE 3. MEAN PO4 CONCENTRATION FOR ALL SAMPLES COMBINEL

—

-

VI HH
€L g9
05 99
SAOS
08 99
iX3e
G1 89
dNT §
¢ 8o
Wla g
cc 99
H4S S
L 89

HOO £



A

Ay

f:

MEANTSS

154

FIGURE 4. MEAN TOTAL SUSPENDED SOLIDS FOR ALL SAMPLES
COMBINED
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FIGURE 5. MEAN NH4 CONCENTRATION (M) FOR STORM

SAMPLES
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FIGURE 6. MEAN NO3 CONCENTRATION (1M) FOR STORM

SAMPLES
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FIGURE 8. MEAN TSS (mg/l) FOR STORM SAMPLES
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FIGURE10. MEAN STORM SAMPLING SALINITY AT TIDAL

STATIONS
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FIGURE 11. MEAN pH FOR STORM SAMPLES
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FIGURE 12. COMPARISON OF MEAN NH4 CONCENTRATIONS
FOR STORM SAMPLES AND RANDOM SAMPLES
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FIGURE 13. COMPARISON OF MEAN NO3 CONCENTRATIONS
FOR STORM SAMPLES AND RANDOM SAMPLES

B Mean NO3 RANDOM

[_] Mean NO3 Storm

7CCH
5SFR
5BLM
5LMP
9EXT
50YS
GB 21
GB 22
GB2
GB15
(GB80
GB50
GB13
HH1A



[lod md wh =t

1,

MEAN PO4 CQN%ENTRATION uM

ocooo.
Om.umoq'-\-*ﬁmhmmm

gy
t +

FIGURE 14. COMPARISON OF MEAN PO4 CONCENTRATION FOR
STORM SAMPLES AND RANDOM SAMPLES
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FIGURE 15. COMPARISON OF MEAN TSS (mg/l) FOR STORM
SAMPLES AND RANDOM SAMPLES
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FIGURE 16. COMPARISON OF MEAN NH4 CONCENTRATION IN
DRY AND WET SAMPLES
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FIGURE 17. MEAN NO3 CONCENTRATION FOR DRY AND WET
SAMPLES
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FIGURE 18. MEAN PO4 CONCENTRATION FOR DRY AND WET
SAMPLES
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FIGURE 19. COMPARISON OF MEAN TSS CONCENTRATION
FOR DRY AND WET SAMPLES
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FIGURE 19. COMPARISON OF MEAN TSS CONCENTRATION

FOR DRY AND WET SAMPLES
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Figure 20. NH4 concentrations at FW and estuarine sites on the Cocheco

and Salmon Falis Rivers
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Figure 21.

NH4 concentration at FW and estuarine sites on the Bellamy and

Lamprey Rivers
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Figure 22. NH4 concenirations at FW and estuarine sites on the Exeter and
Oyster Rivers
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Figure 23. NH4 concentrations at the Piscataqua River and Hampton Harbor
sites "
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Figure 24. NO3 concentrations at FW and estuarine sites on the Cocheco
and Salmon Falls Rivers
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Figure 25. NO3 concentrations at FW and estuarine sites on the Bellamy
and Lamprey Rivers
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Figure 26. NO3 concentrations at FW and estuarine sites on the Exeter and
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Figure 27. NO3 concentrations at the Piscataqua River and Hampton Harbor
sites
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Figure 28. PO4 concentrations at FW and estuarine sites on the Cocheco
and Salmon Falls Rivers
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Figure 29. PQ4 concentrations at FW and estuarine sites on the Bellamy

and Lamprey Rivers
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Figure 30. PQ4 concentrations at FW and estuarine sites on the
Oyster Rivers
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Figure 31. PO4 concentrations at the Piscataqua River and Hampton Harbor

sites
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FC per 100 ml

Figure 32. Geometric average fecal coliform concentrations for all data. Consecutive pairs of sites
are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 32A. Geometric average fecal coliform concentrations (modified State data) for all data.

Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).

|

7

!
7-CCH GB2t

I T I
5-SFR GB22 5-BLM GB2

T

I

!

5LMP 'GB15 9-EXT GB80 5-0YS GB50 GB13 HHIA

s

i
4

kY

ITE

B
—~




180

160

140+

120

100+

Ec per 100 ml

Figure 33. Geometric average E. coli concentrations for all data. Consecutive pairs of sites are
freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 34. Geometric average enterococci concentrations for all data. Consecutive pairs of sites

are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 35. Geometric average fecal coliform concentrations for JEL storm samples. Consecutive
pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 36. Geometric average E. coli concentrations for JEL storm samples. Consecutive pairs of
sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 37. Geometric average enterococci concentrations for JEL storm samples. Consecutive

pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 38. Geometric average fecal coliform concentrations for JEL storm compared to DES
random samples. Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh;
GB#=tidal).
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Figure 38A. Geometric average fecal coliform concentrations for JEL storm compared to DES

(modified data) random samples. Consecutive pairs of sites are freshwater followed by tidal sites
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Figure 39. Geometric average E. coli concentrations for JEL storm compared to DES random
samples. Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh;
GB#-=tidal).
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Figure 40. Geometric average enterococci concentrations for JEL storm compared to DES random
samples. Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh;
GBit=tidal).
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Figure 41. Geometric average fecal coliform concentrations following rainstorms or dry weather.
Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 41A. Geometric average fecal coliform concentrations (modified State data) following
rainstorms or dry weather. Consecutive pairs of sites are freshwater followed by tidal sites (#-
name=fresh; GB#=tidal).
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Figure 42. Geometric average E. coli concentrations following rainstorms or dry weather.
Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 43. Geometric average enterococci concentrations following rainstorms or dry weather.
Consecutive pairs of sites are freshwater followed by tidal sites (#-name=fresh; GB#=tidal).
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Figure 44. Fecal coliform concentrations at freshwater (closed symbols) and tidal (open symbols)
water sites in the Cocheco (7-CCH & GB21) and Salmon Falls (5-SFR & GB22) rivers.
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Figure 45. Fecal coliform concentrations at freshwater (closed symbols) and tidal (open symbols)
water sites in the Bellamy (7-BLM & GB2) and Lamprey (5-LMP & GB15) rivers.
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Figure 46. Fecal coliform concentrations at freshwater (closed symbols) and tidal (open symbols)
water sites in the Exeter/Squamscott (7-EXT & GB80) and Oyster (5-OYS & GB50) rivers.
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Figure 47. Fecal coliform concentrations at sites in the Piscataqua River (GB13) and Hampton
Harbor (HH1A).
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Figure 48. E. coli concentrations at freshwater (closed symbols) and tidal (open symbols) water
sites in the Cocheco (7-CCH & GB21) and Salmon Falls (5-SFR & GB22) rivers.
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Figure 49. E. coli concentrations at freshwater (closed symbols) and tidal (open symbols) water

sites in the Bellamy (7-BLM & GB2) and Lamprey (5-LMP & GB15) rivers.
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Figure 50. E. coli concentrations at freshwater (closed symbols) and tidal (open symbols) water
sites in the Exeter/Squamscott (7-EXT & GB80) and Oyster (5-OYS & GBS50) rivers.
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Figure 51. E. coli concentrations at sites in the Piscataqua River (GB13) and Hampton Harbor

(HH1A).
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Figure 52. Enterococci concentrations at freshwater (closed symbols) and tidal (open symbols)

water sites in the Cocheco (7-CCH & GB21) and Salmon Falls (5-SFR & GB22) rivers.
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Figure 53. Enterococci concentrations at freshwater (closed symbols) and tidal (open symbols)
water sites in the Bellamy (7-BLM & GB2) and Lamprey (5-LMP & GBI1S) rivers.
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Figure 54. Enterococci concentrations at freshwater (closed symbols) and tidal (open symbols)

water sites in the Exeter/Squamscott (7-EXT & GB80) and Oyster (5-0YS & GB50) rivers.
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Figure 55

Harbor (HH1A).
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